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Segmentation of white matter lesions from multimodal MRI in 

small vessel disease  

Ana Isabel da Silva Loução Graça, Biomedical Technology, Instituto Superior Técnico 

Abstract - Cerebral Small Vessels Disease (SVD) is 

one of the main causes of cognitive impairment. 

Magnetic Resonance Image (MRI) has a high 

diagnostic and prognostic value for this kind of 

pathology. White matter lesions (WML) are one of 

the disease characteristic lesion types, which are 

most robustly detected as hyperintensities on images 

acquired using Fluid Attenuation Inversion Recovery 

(FLAIR) MRI. The WML load has high clinical 

relevance, and it is usually evaluated using 

qualitative scales by the neuroradiologist. However, 

a clear correlation cannot be found between WML 

load evaluated using these scales and disease 

progression. It would therefore been desirable to 

perform the segmentation of the WML’s and 

subsequently quantify their volume. However, 

although several studies have addressed this issue, 

there is yet no standard, automatic method for 

WML segmentation.  

In this work, we propose an automatic WML 

segmentation methodology, which is based on the 

use of a common tissue segmentation algorithm 

available on a freeware software package for image 

processing – FSL – applied to multimodal MRI 

acquisitions, namely a FLAIR image and a T1-

weighted image (T1-W). After pre-processing, the 

FAST algorithm was used for tissue segmentation 

into three tissue classes with a multi-channel 

approach taking both the FLAIR and T1-W images 

as input. Both images were co-registration to the 

standard MNI, and the white matter (WM) mask 

obtained by tissue segmentation of the MNI 

standard T1-W image was subtracted from the WM 

mask obtained by the individual tissue segmentation 

in each patient: the difference between these two 

WM masks should correspond to the WML’s in 

each patient. 

The proposed methodology was applied to 

images collected from a group of 16 patients with 

SVD. Sensitivity, specificity and accuracy were 

computed for each patient, through comparison 

with the ground truth obtained by manual 

segmentation of the WMLs. The Dice coefficient 

between the automatic and manual segmentation 

results was also computed. The average results 

belong to the best parameter set and were:  

sensitivity 40,73%; specificity 95,33%; Dice 

coefficient 0,23. 

In summary, our proposed methodology, relying 

on standard and freeware tissue segmentation and 

co-registration tools, was able to achieve a WML 

segmentation with good sensitivity, specificity, and it 

may therefore yield a useful approach to WML 

quantification in SVD. Future work should 

investigate whether WML quantification obtained 

in this way may contribute a useful biomarker of 

SVD. 

Key-words: Small Vessels Disease, White Matter 

Lesion, FLAIR, Segmentation, FSL  
 

1.  Introduction 

 

Cerebral small vessels disease (SVD) is responsible 

for 20% of strokes worldwide, being the most common 

cause of dementia syndromes. [1], [2]. Different 

techniques can be used for SVD diagnostic and staging, 

however all SVD pathologies present white matter 

lesions (WML) hiperintensities in Fluid Attenuation 

Inversion Recovery (FLAIR) (magnetic resonance image 

(MRI) sequence). The WML is clinical relevant and 
neuroradiologists use semiquantitative scales such as 

the Fazekas scale to quantify the WML load (WMLL), 

which can be correlated with the clinical and 

neuropsychological evaluation of the patients. For this 

reason, the WML segmentation is fundamental for the 

diagnosis and monitoring of SVD pathologies. 

This dissertation was developed in the scope of 

the research project Neurophysim (Noninvasive 

quantitative imaging of cerebral physiology: 

application to normal aging and small vessel diseases), 

led by the Institute for Systems and Robotics, Lisbon 
(ISR-Lisbon), in collaboration with Hospital da Luz. 

This project comprised the study of two patient 

populations: 1) sporadic SVD; and 2) Cerebral 

Autosomal Dominant Arteriopathy with Subcortical 

Infarcts and Leucoencephalopathy (CADASIL); this 

genetic pathology is considered a model of vascular 

dementia. 
 

1.1.  Small Vessels Diseases 

 

SVD consist in a set of pathological processes that 

affect the small arteries, arterioles, capillaries and small 

veins [1]. Stroke is one of the main symptoms of 

cerebral SVD. Although the short-term prognostic of 
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this type of stroke are better when compared to other 

pathologies, the long-term prognostic is worse, being 

associated with high mortality and cognitive 

impairment. [3]. Other characteristics in cerebral SVD 

is the cerebral damage due to necrosis, to blood brain 

barrier disruption, to local inflammatory processes and 

to oligodendrocyte loss. SVD can be classified as 

sporadic or genetic. Almost of SVD is sporadic and is 

influence by a mix between genetic and cardiovascular 

risk [4]. SVD can be also organized based on its 

etiology: arteriolosclerosis, cerebral amyloid 
angiopathy, inherited/genetic SVD, 

inflammatory/immunologically mediated SVD, venous 

collagenosis and others (as post-radiation angiopathy) 

[1]–[3]. 

CADASIL is a hereditary disease of the small 

cerebral arteries and despite of not be the most 

prevalent SVD has characteristics that can clarify the 

physiological path of these pathologies. This disorder is 

caused by NOTCH3 mutations that are present in 

chromosome 19p13 [5], [6]. This gene encodes the 

trans-membrane receptor of 2321 aminoacids and it is 
only expressed by smooth muscles from the vascular 

wall [5]. Clinical presentations in CADASIL can 

change between and within families [7]. Some typical 

symptoms that CADASIL patients present are: 

migraine with aura, subcortical ischaemic events, mood 

disturbances, apathy and cognitive impairment. 

Ischaemic strokes are the most frequent manifestation 

in CADASIL, diagnosed in 60-85% of the patients [7]. 

Lacunar infarcts are responsible for some of the 

secondary symptoms, such as dysarthria, ataxia and non 

fluent aphasia [8].  

 

1.2.  Magnetic Resonance Image 

 

In 1977 was acquired the first human MRI image [9] 

and since this discovery, MRI has revolutionized the 

diagnosis of innumerous clinical situations. 

Improvements in MRI hardware and software 

originated better image quality and reduced acquisition 

times [9], Also these improvements allows the 

acquisition of structural and functional information 

[10].  

Magnetic resonance signal is produced after the 

release of energy that comes from the return of excited 

atomic nuclei to an equilibrium state [9]. Hydrogen 
(1H) is the most abundant atom in the human body and 

it has only a proton in this nucleus. Moreover, its 

nucleus produces a strong MR signal. All these 

particularities, this charge and this spin nuclei turns 1H 

into the most useful species for MRI. [11]. 

It is important to know some concepts to understand 

MRI: 

Spin-lattice relaxation: After excitatory pulses 

relaxation happens. It means that protons tend to return 

to their equilibrium state by transferring the energy to 

the environment – lattice. The time constant which 

defines the rate that excitatory protons return to 

equilibrium is namely spin-lattice or T1 relaxation time  

Spin-spin relaxation: The loss of transverse 

magnetization occurs though a process of spin-spin 
relaxation, with a time constant T2. It defines as the 

measure of the time taken for spinning protons to lose 

phase coherence among the nuclei spinning 

perpendicular field 

Repetition time: Repetition time (TR) is the time 

interval between multiple excitation pulses [11]. 

Echo time (TE): It is defined as the time between the 

application of radiofrequency excitation pulse and the 

peak of the signal induced in the coil [11].  

T1-Weighted imaging (T1-W): In order to obtain T1 

information, TR and TE should be shorted for T2 
component suppression [15]. It is useful for visualizing 

the brain anatomy, because it provides excellent 

contrast between gray matter, white matter and CSF 

[14]. 

T2-Weighted imaging (T2-W): It is based on the T2 

time variations across tissues. [14]. T2-W images show 

changes in tissue intensity that are created by 

pathological factors [14]. To create T2-W images, the 

TR and TE should be long [15]. 

Inversion recovery (IR): It occurs when there is the 

inversion of the initial magnetization in z axis. The 
inversion time (TI) represents the delay between the 

inversion and excitation pulses. This procedure allows 
the elimination of normal tissues that can obscure 

pathological signal. Fluid-attenuated inversion recovery 

(FLAIR) is a T2-W sequence based on IR that is used 

for the suppression of CSF, increasing the contrast 

between lesions and normal brain tissues [13].  

1.2.1. MRI in SVD 

In neuroimaging, patients with SVD normally 

present lacunar and/or ischemic lesions like WML [2], 
[3]. Others characteristics of SVD in MRI are 

microbleeds, small subcortical infarcts, WM 

hyperintensities on FLAIR sequences, lacunes, 

prominent perivascular spaces and atrophy. 

Hyperintensities can also be visualized in subcortical 

grey matter (GM), such as in basal ganglia or 

inbrainstem [2]. Lacunar infarcts can be characterized 

on FLAIR sequence, presenting a central CSF-like 

hypointense and sometimes with a hyperintense border 

[2] and on T1-W by a hypointense signal [3]. Cerebral 

microbleeds have a hypointense signal in T2*-W. It is 

important to perform a careful analysis of this lesion 
type because it could be confused to some artifacts or 

other structures [2]. Other SVD’s mark is superficial 
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cortical siderosis. This evidence can be observed in 

subarachnoid bleeding and it means that there are 

chronic blood products in the superficial cortex under 

piamater. T2*-W can identified it and it is characterized 

as hypointense signal [2].  

T2-W and FLAIR sequences are two images 

modalities that present WML as hiperintensities. These 

lesions could be identify also in T1-W but with a 

isoitense or hypointense signal [2], [3]. FLAIR 

sequence also allows to differentiate the WML from 

lacunes or perivascular spaces [1], [2]. 
Diffusion tensor imaging (DTI), Magnetic 

Resonance Perfusion imaging with arterial spin 

labelling (ASL), and functional MRI (fMRI) have 

important results in SVD diagnosis, progression disease 

and pathophysiology research[1], [3].  Also other 

neuroimaging modalities can be used in the diagnosis 

of SVD, such as Single Photon Emission Computer 

Tomography (SPECT) and Positron Emission 

Tomography (PET). These modalities can have a role 

in some SVD especially by identifying metabolic 

defects such as hypometabolism (18F-FDG PET image), 
by establishing amyloid burden (11C-PiB PET image) 

and by analyzing cerebral perfusion (99mTc-HMPAO 

SPECT image) [1]. 

 

1.3.  Lesion segmentation  

 

Segmentation is the classification of pixel from an 

image into different groups with the same features such 

as intensity or texture [12]. This method can be apply to 

MRI brain imaging and is a very important issue for 

some clinical practice situations such as surgical 

planning, multimodality image registration, lesions 

quantification, separating into different cerebral regions 

(CSF, WM,GM), etc [12], [13].  All over the years 

experts try to choose the best segmentation 
methodology for these applications without success. 

Segmentation methodology can be classified based 

on human intervention: manual segmentation, semi-

automatic segmentation and automatic segmentation 

[14]. In manual segmentation method the image is 

labelled slice-by-slice and segmented by hand which 

can be influenced by artifacts and image quality. It is 

used nowadays in the evaluation of automatic 

segmentation through the “ground truth” definition 

[15]. Ideally semi-automatic or automatic methods 

should be preferred [12].  
Some research has been made to solve this 

problem and several algorithms were created and 

improved such as: intensity-based, thresholding, region 

growing, edge detection, classifiers, clustering, 

statistical models, artificial neural networks (ANN), 

deformable models and atlas-guided approaches. Some 

authors, in the attempt to obtain more accurate 

segmentation results, conjugate different methods [12]. 

Expectation maximization (EM) and Markov 

Random Field model (MRF) are two examples of 

statistical models. The combination of these to 

algorithms are the basis of the FSL segmentation tool – 

FAST [15].  

 

1.3.1. Lesion segmentation in SVD 

 

In the last years lesions segmentation in MRI had 

been a challenge that a lot of researchers try, without 

success, to solve. Here will be presented some of the 

research works that address the lesions MRI 

segmentation issue. Some of the papers are not focus 

only in SVD, however pathologic lesions presented are 

similar and some strategy of these methods could be 

important to apply in SVD in future.  

Karthik et al (2016) apply wavelet functions in 
segmentation image for discriminated lesions from 

normal brain tissue and concluded that its presents 

higher differentiation in the discrimination healthy 

tissue from pathologic tissue[16].  

K-NN was used by Anbeek et al (2004). The 

authors used a multiple spectral approach (T1-W, IR, 

Proton Density (PD), T2-W, FLAIR) and concluded 

that this technique has a high sensitivity and specificity 

by ROC curves. [17].  

Si and Bhattacharjee (2016) develop an algorithm 

for detect MRI brain lesions without tissues 
classification. For solve this problem the authors 

created a classifier that uses a Multi-Layer Perceptron 

neural network, which is trained by Levenberg-

Marquardt method. The method present a good results 

in specificity, accuracy and dice coefficient. However 

authors think that better results could be obtained 

associated this method to wavelet features [18]. 

Lesion Identification with Neighborhood Data 

Analysis (LINDA) was proposed by Pustina et al 

(2016). It is a supervised algorithm segmentation that 

uses information from each voxel and their 
neighborhood and promoted hierarchical improvements 

of lesion estimation [19]. The authors only applied one 

image modality (T1-W) for analyzed chronic stroke 

lesions and they employed a Random Forests approach 

that leads a good accuracy results. This algorithm 

presents a high sensitive results and can generated a 

graded posterior probability maps that exhibit the 

model uncertainty [19]. 

FMRIB's Automated Segmentation Tool (FAST) 

uses a hidden Markov Random Field model (HMRF) 

propose by Zhang et al (2001). The authors used MRF 

that do not observe directly the generation of stochastic 
process that it produces but can determinate the process 

from the field observations. Also to estimate model 
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parameters it was applied EM algorithm. The two 

approaches together improve the accuracy and 

robustness of the algorithm segmentation [20].  

 

1.4.  Goals 

 

WML segmentation in SVD can be time-

consuming and can produce inaccurate results. In the 

last years more accurate results are searched by using 

automatic or semi-automatic techniques; however it is 

an unsolved problem because there is no optimal 

method for all pathologies. Nowadays, there is no 

recommended method for this issue and new algorithms 

still be proposed. On the other hand, there are free tools 

that can be used for image segmentation, but there are 

no specific guidelines for their utilization in WML and 
SVD.  

The main aim of this study is to create a WML 

segmentation pipeline, to be applied to SVD, based on 

pre-existing and freely available segmentation 

algorithms. To accomplish this main object, the 

following specific objectives were defined: 

 

• Skull stripping optimization 

• Achieve optimal results for inter and intra subjects 
registration 

• Achieve optimal results in tissue segmentation 

• Produce an accurate gold standard 
 

2. Materials and Methods 

2.1. Study Population 

 

From January 2015 to January 2016, brain MRI 

images were acquired at Hospital da Luz, Lisboa, in the 

scope of the Neurophysim project, following 

appropriate inclusion criteria and upon informed 

consent from all participants, according to the approval 
by the local Ethical Committee.  

The study population analyzed in this thesis is 

composed by16 subjects (5 men and 11 women) with a 

mean age of 52 ± 11 years old. All the subjects have a 

diagnosis of SVD, four of them with the subtype 

CADASIL.  

2.2. Acquisition Protocol 

 

The imaging data was acquired in a 3T Siemens 

Verio MRI system, following a comprehensive 

protocol. The images analyzed were a T1-W image 

obtained using an MPRAGE sequence and a FLAIR 

image. Acquisition parameters for MPRAGE were: 
image size of 144x240x254 pixel with a sagittal 

acquisition orientation, a slice number of 160, a slice 

thickness with 1mm and no spacing between slices. TR, 

TE and TI are respectively 2250ms, 2,26ms and 900ms. 

For FLAIR acquisition the parameters were: image size 

of 256x320x45 pixel with a transaxial acquisition 

orientation, a slice number of 47, a slice thickness with 

3mm and a spacing between slices of 3,3mm. TR, TE 

and TI are respectively 8500ms, 97ms and 2500ms. 
 

2.3. Image Processing 

 

The following processing steps were performed for 

lesion segmentation, including: pre-processing by skull 

stripping and brain extraction; co-registration of 

MPRAGE and FLAIR images, and normalization to 
MNI space; tissue segmentation in three classes (WM, 

GM and CSF); and finally WML segmentation. The 

FSL (FMRIB Software Library v5.0) software package 

was used for all the steps of image processing.  

It was used for skull stripping and brain extraction 

we used the Brain Extraction Tool (BET) from FSL 

software [21]. In some images BET did not yield good 

results in skull striping, so we performed manual brain 

extraction.  

 

2.3.1. Image registration  

 

For our proposed segmentation process requires not 

only the intra-subject image co-registration (T1-W and 

FLAIR), but also image normalization with a standard 

image from the Montreal Neurologic Institute (MNI-

152).  

All registration operations were performed using 

FMRIB’s Linear Image Registration Tool (FLIRT). 
Firstly we register FLAIR in T1-W space by linear 

transformation using FLIRT and the parameters were:  

cost function corratio; interpolation trilinear function; 

angles chosen for the first optimization step are -90º 

and +90º for both x and z directions; both 6 and 12 

degrees of freedom (DOF) were tested. 

For the registration of the T1-W image with the 

MNI image, we first employed a linear registration step 

using FLIRT, with 12 DOF, and otherwise identical 

options to the previous registration. Subsequently, a 

non-linear registration step is also employed using 
FMRIB’s nonlinear image registration tool (FNIRT) 

[22] and a warp is obtained from the FNIRT process for 

T1-W creation in MNI space. FNIRT parameters were   

defined in file configuration recommended 

(T1_2_MNI152_2mm). We also tested running FNIRT 

using a one more lambda value (lambda=8), in the 

attempt to improve registration.  
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The non-linear warp is inverted and concatenated, 

to register any image in the MNI standard space into 

the FLAIR space of each subject. 

 The segmentation of the MNI template brain image 

is performed using default options, into GM, WM and 

CSF. Because this image corresponds to the standard, 

template brain, it does not present any WMLs. 

  
 

2.3.2. Lesion Segmentation 

 

 To obtain a segmentation of the WMLs, we subtract 

the WM mask obtained by multichannel segmentation 

of T1-W and FLAIR into three classes from the WM 
mask obtained from the MNI standard image. In order 

to eliminate residual errors of this subtraction in 

superficial cortical regions, we apply the BET tool to 

the WML mask, using an appropriate fractional 

intensity threshold of 0,8, 0,9 or 1. 

 

2.3.3. Tissue segmentation 

 
Tissue segmentation is performed, based on the 

patient’s individual images as well as on the MNI 

template brain image, using FLS’s tool FAST[41].  

For the segmentation of the patient’s individual 

images we tested two methodologies: a multichannel, 

modality (using both T1-W and FLAIR images) and a 

one-channel modality using either T1-W or FLAIR 

images. It each case, we also tested three or four 

classification classes.  

Initially, we attempted to achieve the automatic 

separation of WMLs from the three normal tissues, 
GM, WM and CSF, by using four classes instead of 

three, and providing both the FLAIR as well as the 

MPRAGE images as input to the multispectral 

segmentation algorithm. However, this approach was 

not successful. In fact, WMLs were systematically 

classified as GM or CSF, even when four classes were 

segmented. Alternatively, we attempted a different 

approach to obtain a WML segmentation, which 

involved the comparison of the patient’s WM mask 

with that of a template brain, without WMLs. 

The segmentation of the MNI template brain image 

is performed using default options, into GM, WM and 
CSF. Because this image corresponds to the standard, 

template brain, it does not present any WMLs. 

 

2.3.4.Performance Evaluation 

Qualitative and quantitative analysis was 

performed. For qualitative measures we observe all the 

segmented images and for quantitative evaluation true 

positive (TP), false positive (FP), true negative (TN) 

and false negative (FN) are calculated. Also we used 

the following outcome measures, by comparison with a 

ground truth, obtained by manual segmentation of 

WMLs (using the same intensity range in all the cases, 

0-1100): 

The Dice coefficient (DC) is calculated by [23], [24]: 

 

DC =
2 × (GT ∩ Seg)

GS + Seg
 

 

where GT is a ground truth segmentation and Seg is an 

automated segmentation.  

 

The sensitivity, specificity and accuracy are calculated 
by [25] [26]: 
 

Sensitivi𝑡y =
TP

TP + FN
 

 

Specificity =
TN

TN + FP
 

 

Accuracy =
TP + TN

TP + FP
 

 

The percentage and of lesion volume non detected 

(LVND) is calculated by: 
 

% Lesion volume non detect =  
GT − TP

GT
× 100 

 
 

LVND =
GT volume × % Lesion volume non detected

100
 (𝑐𝑚3) 

 

3. Results 

 

The methodology implemented has the objective to 

achieve the optimal result in each step. Bad results in 

one step can promote lesion segmentation without 

quality.  

Skull stripping was applied to all brain MRI images. 

More accurate results were obtained changing the 
center of gravity of the initial mesh surface in each 

image which should be located between and slightly 

above ventricles. Manual segmentation was required in 

6 T1-W and in 3 FLAIR images. 

Intra-subject registration results with different DOF 

in FLIRT do not change significantly. However inter-

subject registration results differ between using FLIRT 

or FNIRT, i.e., with FLIRT it is observed problems in 

tissue correlation close to ventricles. Despite better 

registration results, FNIRT registration bring us another 

problem. Both FNIRT registrations classify lesions 

areas as GM instead of classifying as WM. Also, 
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adding a lambda=8 in FNIRT registration led to some 

improvements (Figure 1). 

Different tissue segmentation was proposed. When 

we employed a multi-channel strategy (T1-W and 

FLAIR) the results seems to be more accurate. In three 

classes, we are able to separate WM in all cases. WML 

are also classified as GM in all cases and sometimes as 

CSF. However, when we employed a four classes 

classification the results do not improve.  

Lesion segmentation is based on multi-channel 

approach with three classes and is the result of the 
subtraction of the WM from MNI and the WM from 

multi-channel data (FLAIR and T1-W). Qualitatively, 

in most cases, lesions close to ventricles are not 

classified as lesions. Moreover some GM tissue was 

classified as lesion. These are two sources of lesions 

identification error that were found.  

The subjects with a low WML load had more GM 

classified as lesion than true lesions. When we apply 

BET with a fractional intensity threshold some of the 

GM tissue disappear. This phenomenon is bigger with a 

high threshold value, however with high threshold 

some lesions are nullified (Figure 2) 

The quantitative results support the qualitative 

evaluation. Higher sensitivity values were founded 

when we do not apply BET (FNIRT standard with a 

mean of 48,89 % ±11,49 %  and FNIRT lambda=8 with 

a mean of 40,73 % ± 12,52 %). The sensitivity value 
tend to decrease with higher BET fractional intensity 

threshold (Figure 5). 

Specificity and accuracy results have the inverse 

behavior when comparing with sensitivity. So, FNIRT 

with BET and high a fractional intensity threshold 

present better results. Also the results are generally  

 

           

      A                  B                 C                 D 

                              

             E                                             f 

                          

             G                                                H 

Figure 1: Registration results. Comparison between the WM from different registrations. A - WM from T1-W to FLAIR 

registration with FLIRT DOF12; D - WM from MNI to FLAIR registration with FLIRT DOF 12; C - WM from MNI to FLAIR 

registration with FNIRT; D - WM from MNI to FLAIR registration with FNIRT with lambda=8; E – Comparison between WM 

T1-W to FLAIR registration and WM MNI to FLAIR registration with FLIRT DOF 12; F – Comparison between WM T1-W to 

FLAIR registration and WM MNI to FLAIR registration with FNIRT; G – Comparison  between WM T1-W to FLAIR 

registration and WM MNI to FLAIR registration with FNIRT lambda=8; H - Comparison between WM MNI to FLAIR 

registration to FNIRT and WM MNI to FLAIR registration with FNIRT lambda=8. 
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with lambda=8 
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higher with FNIRT lambda=8 as observed in Figure 5. 

For specificity and accuracy the higher value belongs to 

FNIRT lambda=8 (98,92% ± 0,26% and 97,08 

%±1,71% respectively). 

DC results follow the same trend of specificity and 

accuracy results. Also it is observed a high difference 
between the two FNIRT registrations without BET. 

FNIRT with lambda=8 has a DC value double than 

FNIRT standard (0,23±0,12 and 0,13±0,08 

respectively). However we are able to increase this 

value with the BET application, higher the fractional 

intensity threshold, higher is DC (Figure 3).  

We also analyzed the lesion identification error. The 

behavior of this evaluated parameter is similar to 

sensitivity. So, with higher a BET fractional intensity 

threshold parameter, higher is the lesion volume that it 

is not identified. 

However all the values are high, with BET fractional 

intensity threshold parameter of 1, the percentage of not  
identified lesions are higher than 70%. The results can 

be observed in Figure 4.  
In Figure 5 all the parameters are compared to 

understand which is the best option. After graphical 

analyses FNIRT standard is more susceptible to BET 

influence than FNIRT lambda=8. Also, FNIRT 

lambda=8 without BET application seems to have good 
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Figure 2: WML segmentation results obtained by different methods  

 

                                 

                                    FLAIR                                               Ground Truth 
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results because do not have low accuracy and 

specificity and presents an intermediate DC result. 

Sensitivity result is not reasonable comparing to others 

results and the volume of lesion that is not identified by 

automatic segmentation is not the worst. 
 

4. Discussion 
 

This study aimed to develop a pipeline for 

automatic WML segmentation of MRI images from 

SVD patients.  
Skull stripping is required for image registration 

and segmentation, however automatic method do not 

achieve good results in 9 MRI images which need a 

manual skull stripping, that is time consuming. Popescu 

et al in the attempt to optimize parameters to increase 

BET performance in T1-W images concluded that for 

some acquisitions protocols the results are not 

satisfactory and the reason is the amount of neck slices 

present [27].  

 
Figure 3: Group average DC results (error bars represent 

SD). 

 

 
Figure 4: Group average non detected lesion volume results 

(error bars represent SD). 

Also, Leung et al. compared four methods of brain 

extraction and concluded that this protocol tend to 

exclude temporal and frontal lobe as well as 

cerebellum. In our study, bad BET results present the 

same lake in frontal lobe and cerebellum tissue. 

In our work, registration has the objective to 

transport T1-W to the FLAIR space to a multichannel 

segmentation with FAST. Also registration with MNI is 

required. We employed FLIRT for T1-W and FLAIR 

registration between same individuals and the results 

are  
accurate. However when we register MNI whit T1-W 

and FLAIR is not so positive because there are brain 

structural differences between a standard and a real 

patient brain. FNIRT registration demonstrates more 

accurate results than FLIRT for these cases and seems 

to more perfect with the application of lambda=8. 

However, better results are required to increase the 

segmentation performance.  

Other request for this study is that all the images 

 

Figure 5: Comparison between the different performance 
measures for the different pipeline options tested. Grey line 

divided the results obtained by using different BET in FNIRT 
standard and in FNIRT lambda=8. 

should be in FLAIR space. The reason is related with 

the fact that one of the MRI images characteristics for 

SVD is hyperintensities in WM on FLAIR sequence. If 

the study was not drawn in this space, lesions alteration 

could be appearing and the results will suffer a bias. So 

it is important to work with the data in the original 

space for more accurate results. 

Other step analyzed was tissue segmentation. Three 

classification classes have better results when 

compared with four classes. The main idea to use a four 

classes approach comes from the possibility that, with a 
multi-channel registration, lesions appear as a fourth 

class. WML hyperintensities in FLAIR can be 

visualized as hypointense signal in T1-W brain image. 
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FAST uses a MRF model. This model is characterized 

by mutual influences between pixel [12]. If we 

conjugate the images, maybe the model could identify 

the hyperintensities in FLAIR in same locations of 

hypointensities in T1-W and identifies as another class. 

In this case, integrating both images reduce the 

uncertainty and increase the accuracy of segmentation. 

Admiraal-Behoul et al also uses a multi-channel 

approach (PD, T2-W and FLAIR) for the same fact 

[18]. 

Tissue segmentation was required not only to 
separate WML but also to separate WM from other 

classes. So, if we are not able to put WML in a single 

class we need to change the approach. Thus, in 

patient’s WM we know that pixel where lesions are 

located do not belong to WM class and if we subtract 

this WM with the WM of a pattern without lesions 

(MNI’s WM) we should obtain the WML images. 

However, in our research, this is not true. One 

possibility for this outcome is a not perfect registration. 

Almost all the lesions which have an incorrect 

classification are close to the ventricles and outside 
brain regions (GM are incorrectly classified as a 

lesion). The reason for this result is a non-optimal 

registration that leads to errors classifications in MNI 

and this missclassified tissue in MNI becomes FN or 

FP. Besides that with big lesions FAST classifies MNI 

images as GM, so when we applied the subtraction 

there is no WM in MNI image in the lesion location. 

This problem is more obvious when we use a better 

registration (FNIRT with lambda=8) and can be a 

reason for less sensitivity  
in this case. 

To brush away some misclassified pixels, we used 
the fractional intensity threshold from BET parameters. 

This automatic segmentation, with a higher fractional 

intensity threshold, has high specificity values, 

however the sensitivity values are not so satisfactory. 

The accuracy results are reasonable. Discrepancies of 

the sensitivity results between patients are high in all 

cases [25].   

The reason for specificity measures (higher values 

with higher fractional intensity threshold) is the 

elimination of GM tissue that was misclassified [25].  

The accuracy of FNIRT with lambda=8 and 
fractional intensity threshold of 1, is 97,08% , the 

higher value obtained. 

DC reasonable value is higher than 0,7 [21], [28]. 

Our results are very low comparing with this value (all 

of the DC mean values are less than 0,3) and better DC 

results come from patients with a high WML load. 

An important result is the lesion quantification that 

is not identified by the automatic segmentation. The 

values are high and trend to increase when we apply 

BET. However it is not satisfactory for clinical practice 

yet. 

FNIRT lambda=8 without BET application seems to 

be the more consensual when we analyze all the results. 

It does not have the best result in any evaluated 

parameter but when we proceed to the comparison 

between all of the methods used it is the methodology 

that have more true results and it is capable to 

identified a high lesion percentage. When comparing 

the results with other studies the results are not 

satisfactory.  Anbeek et al [24], Si et al  [18], Admiraal-

Behloulet al [28], Jokinen et al[29] Pustina et al [19], 

Strumia et al [30] concluded that a small WML load 
have worse results than with the high lesion load. So 

this is in agreement with our results. However the 

algorithm that these authors proposed have higher DC 

results than ours. Table 1 shows the different DC 

results from papers. 

 

Table 1: Different DC results from papers 

Papers DC 

Anbeek et al 0,81 

Si et al 0,87 

Admiraal-Behloul et al 0,75 

Pustina et al 0,70 

Strumia et al 0,520 

 

A study limitation is the gold standard that should 

be done by an expert however this was not possible. 

This detail turns this work less accurate because 

experience in MRI brain visualization is fundamental to 
achieve better results in ground truth. Other 

disadvantage of this pipeline is also time consuming for 

some steps. 

Using a free framework is the biggest advantage, 

because all people can use it. There are other free 

frameworks for lesions segmentation and 

quantification. MSMetrix is available in 

https://msmetrix.icometrix.com. The big disadvantage 

of MSMetrix is that we only have access to the report 

of lesion segmentation and we are not able to visualize 

all the slices. So is a blind user framework that requires 

all users to believe in the result that give us. 
 

5. Conclusion 

 

Characterization of WM hyperintensites on FLAIR 

images is an important feature for diagnosis and 

prognosis of SVD and this could be possible through 

WML segmentation. 

The images processing is done in a slow 
framework. Also the results are not so positive. 

Towards these results, changes in the methodology 

should be done.  

For future work, we could apply vertical gradient in 

fractional intensity. This can cut off more FP pixels and 

https://msmetrix.icometrix.com/
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reserve the TP pixels eliminated in this procedure. 

Other possibility is the registration of PD images with 

FLAIR and T1-W that can improve tissue segmentation 

because of FLAIR hyperintensities artifacts. The 

application of this registration will produce more 

accurate tissue segmentation and maybe more accurate 

lesion segmentation. Also, it could be important to 

investigate if WML quantification obtained in this way 

may contribute a useful biomarker of SVD 

One of the problems report is the inter-subject 

registration. More accurate registration outcomes 
promote a better WML classification. Results from 

FNIRT are satisfactory but if we change some 

parameters such as lambda we believe that a better WM 

registration is possible from the MNI and FLAIR 

images. Also, a more correct WML classification is 

achieved.   

Other possible strategy is using the GM tissue mask 

instead of WM, because the majority of hyperintense 

WML belongs to GM classification and the other 

lesions that are not as GM are lacunes and belongs to 

CSF 
We think that better results are possible with this 

free framework. However more parameters should be 

analyzed in future works and maybe a more efficient 

pipeline will be obtained. 
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